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Finite times to equipartition in the thermodynamic limit
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We study the time scaleT to equipartition in a 1D lattice of N masses coupled by quartic nonlinear~hard!
springs~the Fermi-Pasta-Ulamb model!. We take the initial energy to be either in a single modeg or in a
package of low-frequency modes centered atg and of widthdg, with bothg anddg proportional toN. These
initial conditions both give, for finite energy densitiesE/N, a scaling in the thermodynamic limit~largeN!, of
a finite time to equipartition which is inversely proportional to the central mode frequency times a power of the
energy density (E/N). A theory of the scaling with (E/N) is presented and compared to the numerical results
in the range 0.03<E/N<0.8. @S1063-651X~99!09110-2#

PACS number~s!: 05.45.2a, 63.20.Ry, 63.10.1a
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I. INTRODUCTION

In previous work@1,2#, the time scale to achieve equipa
tition in a nonlinear lattice of masses coupled by hard spri
@the Fermi-Pasta-Ulamb ~FPU-b! model# was studied with
the initial energy primarily in a low-frequency mode, o
mode numberg. It was shown in@1#, numerically and theo-
retically, that energy transfer to high-frequency modes is
ponentially slow in a perturbation~energy! parameter at low
energy. The mechanism of a transition to more rapid ene
transfer is that for energy above a thresholdE}N21, inter-
action of neighboring low-frequency modes will lead to
local superperiod beat oscillation, of periodTB}N2/gEg ,
that is stochastic. At a sufficiently high energy a resona
with high frequency modes leads to a transition to a f
diffusion regime which occurs above a critical energyE
5Ec , independent ofN. The equipartition time scale forE
.Ec was studied numerically in@1,2#, with the more de-
tailed numerical investigation of the scaling time to equip
tition in @2# for 0.2<E/N<1.0 giving T}TBAN. The AN
was interpreted as a size-dependent correction to theTB time
scale. In a heuristic treatment of a more general oscilla
chain we indicated a possible explanation for theAN mode
filling factor @3#. If we additionally setg}N in TB , above,
thenTB only depends on the total energy per mode~energy
density!. The numerical results in@2# on the other hand, in-
dicated thatT, having an additionalAN dependence, would
become infinite withN at constant energy density, and ther
fore T would not have a finite value in the thermodynam
limit.

In another study@4#, the energy was placed in a low
frequency package centered on a modeg}N and with an
extensiondg}N. In that work the numerical results ind
cated that the equipartition time was dependent only on
energy densityE/N and therefore remained finite in the the
modynamic limit, for a finiteE/N. However, the measure o
equipartition used in that study was rather insensitive, so
the exact scalings were difficult to obtain.

Other work has also discussed the question of time
PRE 601063-651X/99/60~4!/3781~6!/$15.00
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equipartition for various initial conditions and nonlinearitie
@5–10#. In an early investigation, at higher energies, the
lation between time scales and Lyapunov exponents was
vestigated@5#. At the higher energies investigated in th
study, there was primary mode overlap, for which a we
power-law behavior was observed, with a transition to s
chasticity governed by a random matrix approximation. T
existence of weak chaos at vanishing energy was further
plored in Ref.@11#. In other studies of more regular system
such as the discretized integrable sine Gordon equation@6#,
and the FPU-a cubic nonlinearity, which is a two term Tay
lor series approximation to the integrable Toda lattice@8#,
abrupt transitions were found between power law behav
and ‘‘essentially integrable’’ behavior. This class of coupl
systems is well worth further study, but has significantly d
ferent properties from the more thoroughly studied FPUb
system. In another study af4 nonlinear chain was intro-
duced to allow the transition between power law and ex
nentially slow behavior to be studied@9#. The attention was
mainly on the exponentially slow time scales in the low e
ergy ~small quartic nonlinearity! region, which is not our
concern here. In this paper we examine the relationship
tween initial conditions for which the energy is placed p
marily in a single modeg, which we call ‘‘mechanical’’
initial conditions, with initial condition for which the energ
is placed in a finitedg package of neighboring modes wit
dg}N, which we call ‘‘physical’’ initial conditions. We
find, numerically, that there is a transient timet}AN, with
mechanical initial conditions, which does not exist or is
minor importance for the physical initial conditions. Th
transient behavior manifests itself at relatively smallN ~rela-
tively largeE/N!, explored in@2# and@3# but tends to disap-
pear for largeN, thus preserving the thermodynamic limit.

The FPU-b model is a chain ofN masses, coupled to
nearest neighbors by hard quartic nonlinear springs.
Hamiltonian representing the chain is

H5(
i 50

N pi
2

2
1

1

2
~qi 112qi !

21
b

4
~qi 112qi !

4. ~1!
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We consider the case of strong springs (b.0) and fixed
boundariesq05qN1150. The constantb describing the
strength of the anharmonic potential can be scaled to
positive value. We vary the energy and fixb at the value 0.1
to compare with previous studies of the FPU lattice. T
equations of motion are integrated using a fourth order s
plectic integrator. The harmonic part of the Hamiltonian c
be put in the form ofN-independent normal modes via th
canonical transformation

qi5(
j 51

N

ui j Qj , j 51,N, ~2!

with canonical variablesQj . The columns of the matrixui j
are the orthonormal eigenvectors of the positive definite H
mitian eigenvalue problem for theQ’s. The frequenciesv j of
the normal modesQj are

v j52 sinS p j

2N12D . ~3!

The above transformation puts the Hamiltonian~1! into the
form

H5(
i 51

N S 1

2
Pi

21
v i

2

2
Qi

2D
1

b

~8N18! (
i , j ,k,l

v iv jvkv lG~ i , j ,k,l !QiQjQkQl ,

~4!

where the coefficientsG, as calculated in@1#, are

G~ i , j ,k,l !5(
P

B~ i 1 j 1k1 l !, ~5!

whereP represents the eight permutations of sign ofj, k, and
l and the functionB(x) takes the value 1 if the argument
zero,21 if the argument is62(N11), and zero otherwise

II. NUMERICAL CALCULATIONS

The main numerical tool we use is the calculation of t
effective number of modesneff containing the energy. We
use the general formalism of our previous work@1,2# that the
linear energiesEi[1/2(Pi

21v i
2Qi

2), i 51, . . . ,N, are calcu-
lated as a function of time. The information entropy is giv
by S52S i 51

N ei ln ei , whereei5Ei /S i 51
N Ei are the normal-

ized energies. We define the effective number of modes s
ing the energy byneff(t)[expS @1–3#. We divideneff by N,
to get a fraction in the range from zero to one, which we p
versus time for various values ofN and energy densitie
E/N. We also average over 10–20 different realizations
the initial mode phases to minimize fluctuations. We ta
care to distribute the phases of the modes in a random
so that the quartic term in~1! does not make the total energ
very different from the linear energy. In this way one
always close to a set of slightly perturbed linear oscillators
long as (bE/N)&1.

For physical initial conditions we distribute the total e
ergy E uniformly amongdg5N/16 low-frequency modes
y

e
-

n

r-

r-

t
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ranging fromN/64 to 5N/64 with randomly chosen phase
for a fixed value ofE/N over a range ofN, and plotneff /N
versus time. We compare the results to mechanical in
conditions in which energy is placed in a fixed number
modes wheredg55 with the modes ranging fromN/64 to
(N/64)14. We have worked with other values ofdg, finding
the same qualitative results.

In Fig. 1 we show the evolution ofneff /N at fixed energy
density E/N50.1 for N ranging from 256 to 4096 fordg
5N/16. The data are seen to lie essentially on a unive
evolution curve with the correspondence improving for lar
values ofN ~error bars, where shown, refer to the statistic
error computed over the different initial phases; otherw
errors are of the size of the symbols!. This result is verified
numerically for energy densities in the range ofE/N @0.03,
0.8#. In Fig. 2 we show the evolution ofneff /N for the initial
E/N50.05 and for the same range ofN, as in Fig. 1, but for

FIG. 1. neff /N vs time with E/N50.1 anddg5N/16, for N
5256, 512, 1024, 2048, and 4096. The error bars are the rms v
tion over ~typically! 10 independent trials, which are averaged
give final values.

FIG. 2. neff /N vs time with E/N50.05 and dg54 for N
5256, 512, 1027, and 2048. Error bars as in Fig. 1.
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dg55 and centered aroundg5(N/64)12. We see that there
is an initial transient with the evolution ofneff /N versus time,
different for eachN value, but coalescing later in the evolu
tion at longer times and higher values ofneff /N. If we intro-
duce a factor ofAN to normalize the time scale~not shown!,
we then find that the evolution curves coalesce at early tim
but then diverge. These results are qualitatively consis
with the numerical study in@2# ~Fig. 5!, which indicated an
extra volume filling factor, proportional toAN, when the
energy was placed primarily in a single low-frequency mo
typically g53. In this case the primary driving frequency
a beatVB}gE/N2, with g53, such that the time for trans
fering energy is much longer than in the present situati
This allows the filling of the low frequency modes by su
cessive excitations~see Ref.@1#! to manifest itself in the
additional AN dependence. In Fig. 3 we plotneff /N as a
function of the logarithm of time, for a range ofE/N values
again with physical initial conditions~note that neff /N
asymptotically converges to a value which is smaller than
due to fluctuations as computed in Ref.@6#!. The evolution is
a monotonically increasing function with an initial transie
and later an approximately linear increase on the logarith
time scale. The linear part shifts to the left by somewhat l
than a decade with every doubling of the energy dens
which indicates a power law increase of the time scale w
(N/E)a having an approximate exponenta.3. To be more
quantitative we will normalize the time by a function o
N/E, as in@2# ~Fig. 5!, to determine if all values ofN/E can
be fitted on a universal curve, after estimating the value oa
analytically.

III. SCALING ESTIMATE AND NUMERICAL
COMPARISON

In the following we present an approximate theory
Hamiltonian diffusion to explain, qualitatively, the powe
law behavior at low-energy densities. We start by assum
that there is an effective number of low-frequency modesdk
that are responsible for stochastically transferring energ

FIG. 3. neff /N vs time for N52048 andE/N50.03, 0.05, 0.1,
0.2, 0.4, and 0.8.
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the high-frequency modes, leading to equipartition. We
sume that the initial mode package containing the ene
dg, is such thatdg<dk, where the size of the effective
packagedk determines the couplings to high frequency. B
cause, for early times, most of the energy is in the lo
frequency modes, it is convenient to classify the quartic m
nomial appearing in the sum of~4! depending on how many
of the four Q’s in it belong to low-frequency modes. Th
largest quartic terms at early times have the fourQ’s of low-
frequency modes. These couplings produce deformation
the linear actions of the low-frequency modes, creating s
chastic separatrices for those modes. In@1# it was shown that
the necessary energy to create separatrices in the
frequency modes hasE}1/N if energy is placed in a single
mode. If we place energy indg}N modes we expect sto
chastic separatrices to be created forE/dg}1/N, such thatE
is independent ofN. However, this occurs at low energy fo
dg/N small.

Because of the nonlinear couplings among the lo
frequency modes, the frequency of these modes is corre
by a beat that we approximate in the following way. W
substitute canonical action angle variablesQi

5A(2I i /v i)cos(fi) and Pi5A(2v i I i)sin(fi) into the
Hamiltonian~4!, to obtain

H5(
i

v i I i1S b

2N12D
3 (

i , j ,k,l
G~ i , j ,k,l !Av iv jvkv l I i I j I kI l ang~ i jkl !, ~6!

where ang(i jkl )[cos(fi)cos(fj)cos(fk)cos(fl). The fre-
quency of modei is the derivative of the Hamiltonian respe
to I i , which evaluates to

V i5v i1S b

N11D
3(

j ,k,l
G~ i , j ,k,l !Av iv jvkv l I j I kI l ang~ i jkl !/AI i . ~7!

We further assume that there is a rapid spreading over l
frequency modes, as observed numerically@1#, such that we
are considering the sum to run over somedk modes, to be
determined. After using the selection rule~5!, the number of
terms in the above sum is then of the order of (dk)2. We also
assume every quartic term in this sum is typically of t
same size, i.e., with equal energies for all low-frequen
modes,v i I i5E/dk. Since these terms come with rando
phases, according to standard Gaussian statistics we tak
sum to be proportional to the square root of the number
terms. With these assumptions, and settingv i5v j so that
(I j /I i)

1/2 cancels,~7! becomes

V i'v i1v i

bE

N
~8!

with the dk21 in the energy per mode canceling thedk ef-
fective couplings. In~8! and below we setN11.N ~large
N! except where it appears in the selection rule. From~3!
v i.p i /N, for low-frequency modes, and taking the be
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frequencyVB , betweenv i and a neighboring mode, to be o
the order of the nonlinear frequency shift, we obtain, for a
i ~with i !N!,

VB;
p i

N

bE

N
. ~9!

The change in the linear energyEi5
1
2 (Pi

21v i
2Qi

2) of a
driving low-frequency modei, can be calculated by takin
the derivative of~6! with respect to the anglef i

dEi

dt
52S 2b

N11Dv i

3 (
j ,h1,h2

G~ i , j ,h1,h2!Av iv jvh1vh2I i I j I h1I h2 sinf i

3ang~ j ,h1,h2!. ~10!

As in our previous work@1# the notationh1 andh2 explic-
itly indicates that the energy transfer occurs only betwe
low-frequency beat oscillation and high-frequency mode d
ference oscillations through the Arnold diffusion mechanis
In the above equation, the summation is over indicesj, h1,
and h2 for a giveni. The only terms to transfer energy t
high frequency modes are the ones wherej 5 i , since then
the product of the two low-frequency angles does not hav
fast phase associated with it. Additionally, the selection r
requires thatG( i , j ,h1,h2) will be zero unless

2i 1h11h252N12, ~11!

for which G521. Expanding the dispersion~3! at high fre-
quency and using~11!,

dvh.~p2i /2N2!~h12h2!. ~12!

In order for the low-frequency beat oscillations to trans
energy by Arnold diffusion to the high-frequency beats
requireVB*dvh . From ~9! and ~12! the inequality gives

p

N
i
bE

N
*

p2

2N2 i ~h12h2!max

which reduces to

dh[~h12h2!max&
2bE

p
. ~13!

To determine the number of terms in the sum in~10! we note
that for everyi we can takeh2 arbitrarily from the high-
frequency package ofdh modes and thenh1 is calculated
from ~11! with the restriction, from ~13! that h12h2
&2bE/p. Writing ~11! in the form

i 5N112h22l /2, l integer,

such that fori 51, we have

h25N21, l 52

h25N22, l 54

]

y

n
-
.

a
e

r

up to i 5dh for which

h25N2dh/2, l 5dh.

Thus we have a decreasing number of couplings with
creasingi, with the average number of couplings per low
frequency modedh/4 which scales withbE as in~13!. Sub-
stituting this result, together with~13!, into ~10!, then for a
single low-frequency modei we obtain an estimate for its
averaged energy decay

dEi

dt
52S 2b

N Dv i

bE

2p
EiEh~ t !, ~14!

where from~3! v i5p i /N.
Sincedk low-frequency modes, assumed to have ener

couple todh high-frequency modes withdk5dh, the cross
couplings imply each high-frequency mode is coupled
average todk/4 low-frequency modes. There are phases
the low-frequency mode beat oscillations and in the hig
frequency difference oscillations that can affect the Arno
diffusion. This has only been studied for exponentially slo
diffusion @12#. The effect of these phases when more th
one driving term exists, for the case of strong Arnold diff
sion, VB&dvh , has not been studied. For lack of eviden
we will use the simplest assumption that the effect from e
low-frequency mode is independent. Settingv i5bE/N ( i
5dh/25bE/p) as an average value in~14!, and dividing by
Ei , we obtain, an average, for each mode in the packag

dEi

Ei
52

b

p S bE

N D 2

Eh~ t !dt, ~15!

with the assumption for scaling purposes that the numbe
couplings is fixed. Integrating~15! in time, with Ei(t) vary-
ing from E/dk at t50 to the equipartition valueE/N at the
final time T we get

lnS N

dkD.S b

p D S bE

N D 2E
0

T

Eh~ t8!dt8. ~16!

Equation~15! only holds, initially, sinceE decreases in time
as the diffusion proceeds. However, the change inE is slow
compared to the initial build up of the energy in the hig
frequency modes. Furthermore, we expect that as the en
in the high-frequency modes increases, other pathways
come available for the energy distribution among the mod
to further justify holding the number of couplings constant
the integration. The final step in the approximation is to
timate the value of*0

TEh(t8)dt8 at t5T, a time of ‘‘near
equipartition.’’ The quantityEh(t) appears in an integral, s
that its exact form is not required. For a diffusive process
which the amplitudes of the modes increase witht1/2, we
might expect the mode energies to increase linearly witht,

Eh~ t !.
t

T
~E/N!,

such that the time dependence does not depend onN. This is
found to be approximately true, numerically, over most
the evolution to near equipartition. Other forms of the tim
dependence ofEh can also be taken with only small numer
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cal differences. Evaluating the integral with the assumpt
of linear time dependence ofEh(t) we obtain

T.
2p

~bE/N!3 lnS p

2bE/ND . ~17!

We note that the logarithmic factor varies slowly. The n
merical coefficient is only a rough estimate. Equation~11!
exhibits a basic scaling ofT}(N/E)3. The scaling can be
checked numerically, by rescaling the time in Fig. 3. This
done in Fig. 4, for five values ofE/N, giving reasonable
confirmation of the rescaling of time with (N/E)3. We also
confirm this scaling by plotting the time to reachneff /N
50.4 againstE/N, for all of the data, comparing the result
the inverse cubic scaling~dotted line!, in Fig. 5. We can also
compare the magnitude ofT in ~17! with the numerics. Ex-
trapolating the linear~with log time! portion of the E/N
50.1 curve in Fig. 3 toneff /N51 we obtain, approximately
T;107. Considering our many approximations, this value
remarkably close to the value ofT.33107 obtained from
~17!.

IV. CONCLUSIONS AND DISCUSSION

We have indicated, numerically, and justified, theore
cally, that the FPU-b model has an appropriate thermod
namic limit. Provided there is sufficient energy in a group
low-frequency modes that stochastic diffusion to hig
energy modes occurs on a nonexponentially slow time s
@1#, then the dominant time scale to equipartition is a pow
law (N/E)a. The value ofa53, estimated from a theoretica
scaling argument, was found to fit well to the numerical da

FIG. 4. neff /N vs t(bE/N)3.
n

-

s

-

f
-
le
r
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The numerical results also clarify a result from a previo
paper @2# in which a N1/2 scaling was numerically found
which would not allow a finite-time thermodynamic limi
The resolution of the seeming contradiction is that there is
initial transient which can extend over much of the time
equipartition if N is not very large and the initial energy i
placed in the first few modes~not proportional toN!. The
existence of a thermodynamic limit also agrees with@4#, in
which the energy was also placed in a mode packetdg}N.
The power ofN/E, in that study, numerically fit better to
a.1. The use of a different equipartition parameter, le
sensitive thanneff /N, could have led to uncertainty ina, but
the issue has not been resolved.

We emphasize that the theory we have developed to
plain the scaling, does not predict the shape ofneff(t) which
depends on complicated dynamical processes. Furtherm
neff is related to the evolution of the energy in the individu
modes in a very complicated way. These dynamics lie
yond a simple mode-averaged theory. We also empha
that the theory depends on having nonexponentially s
stochastic diffusion to high-frequency modes, being driv
by local mode-mixing stochasticity among low-frequen
modes@1#. For the approximations to be valid we require th
T@t where t is the time scale for the assumed stochas
process. Sincet;VB

21;(N2/bE)2, the approximations
hold if bE/N!1.
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FIG. 5. t(neff /N50.4) vsE/N compared to proportionalityt vs
(E/N)3 of dashed line.
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