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Finite times to equipartition in the thermodynamic limit

J. De Luca A. J. Lichtenberd, and S. Ruffd
Ynstituto de Fsica, Universidade Federal dé &a&arlos, Caixa Postal 676, 13565-905@8arlos, SP, Brazil
’Department of Electrical Engineering and Computer Sciences and the Electronics Research Laboratory,
University of California at Berkeley, Berkeley, California 94720
3Dipartimento di Energetica “S. Stecco,” Universitii Firenze and INFN, 50139 Firenze, Italy
(Received 2 June 1999

We study the time scal€ to equipartition in a D lattice of N masses coupled by quartic nonlinébard
springs(the Fermi-Pasta-Ulang mode). We take the initial energy to be either in a single mader in a
package of low-frequency modes centered aind of width dy, with both y and &y proportional toN. These
initial conditions both give, for finite energy densitiEsN, a scaling in the thermodynamic linfiargeN), of
a finite time to equipartition which is inversely proportional to the central mode frequency times a power of the
energy densityE/N). A theory of the scaling withE/N) is presented and compared to the numerical results
in the range 0.08 E/N=<0.8.[S1063-651X99)09110-2

PACS numbegps): 05.45—-a, 63.20.Ry, 63.16:a

[. INTRODUCTION equipartition for various initial conditions and nonlinearities
[5-10. In an early investigation, at higher energies, the re-
In previous work[1,2], the time scale to achieve equipar- lation between time scales and Lyapunov exponents was in-
tition in a nonlinear lattice of masses coupled by hard springgestigated[5]. At the higher energies investigated in that
[the Fermi-Pasta-Ularg (FPU-8) model was studied with ~ Study, there was primary mode overlap, for which a weak
the initial energy primar"y in a |Ow-frequency mode’ of pOWe.r'lla.W behavior was Observed, W|th a tranSItlon to sto-
mode numbety. It was shown in[1], numerically and theo- chestlcny governed by a randor_n matrix approximation. The
retically, that energy transfer to high-frequency modes is ex&Xistence of weak chaos at vanishing energy was further ex-
ponentially slow in a perturbatiofenergy parameter at low plored in Ref.[_ll]. Ir_l other studies of_ more regular systems,
energy. The mechanism of a transition to more rapid energ uch as the dlscrenzed |.ntegr.able sine .Gordon equilipn
transfer is that for energy above a threshBlN 2, inter- nd the FP U cup|c nenllneanty,_whlch IS a two term Tay-
. . . . lor series approximation to the integrable Toda lat{i6§
action of neighboring low-frequency modes will lead to a

local superperiod beat oscillation, of peridgoN/yE abrupt trans_ition_s were found between power law behavior
. X - C v’ and “essentially integrable” behavior. This class of coupled
that is stochastic. At a sufficiently high energy a resonancey o ms s well worth further study, but has significantly dif-
with high frequency modes leads to a transition t0 a fasfgrent properties from the more thoroughly studied FRU-
diffusion regime which occurs above a critical enefBy  gysiem. In another study @* nonlinear chain was intro-
=E., independent oN. The equipartition time scale f&  guced to allow the transition between power law and expo-
>E. was studied numerically if1,2], with the more de- nentially slow behavior to be studid@]. The attention was
tailed numerical investigation of the scaling time to equipar-mainly on the exponentially slow time scales in the low en-
tition in [2] for 0.2<E/N=<1.0 giving TocTB\/N. The VN ergy (small quartic nonlinearity region, which is not our
was interpreted as a size-dependent correction td gn@me  concern here. In this paper we examine the relationship be-
scale. In a heuristic treatment of a more general oscillatotween initial conditions for which the energy is placed pri-
chain we indicated a possible explanation for ¢ mode  marily in a single modey, which we call “mechanical”
filling factor [3]. If we additionally sety=xN in Tg, above, initial conditions, with initial condition for which the energy
thenTg only depends on the total energy per madeergy is placed in a finitedy package of neighboring modes with
density. The numerical results if2] on the other hand, in- §y=N, which we call “physical” initial conditions. We
dicated thafT, having an additional/N dependence, would find, numerically, that there is a transient tirtrey/N, with
become infinite wittN at constant energy density, and there-mechanical initial conditions, which does not exist or is of
fore T would not have a finite value in the thermodynamic minor importance for the physical initial conditions. This
limit. transient behavior manifests itself at relatively sniallrela-

In another study[4], the energy was placed in a low- tively largeE/N), explored in[2] and[3] but tends to disap-
frequency package centered on a mogeN and with an  pear for largeN, thus preserving the thermodynamic limit.
extensiondy=N. In that work the numerical results indi- The FPUB model is a chain ofN masses, coupled to
cated that the equipartition time was dependent only on theearest neighbors by hard quartic nonlinear springs. The
energy densitfE/N and therefore remained finite in the ther- Hamiltonian representing the chain is
modynamic limit, for a finiteE/N. However, the measure of
equipartition used in that study was rather insensitive, so that 2 1 3
the exact scalings were difficult to obtain. _ P N2 P 4

Other work has also discussed the question of time to : iZO 2 2@ 7@ wn (D
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We consider the case of strong spring$>0) and fixed 0.5 T .
boundariesqy=qyN+1=0. The constant3 describing the

strength of the anharmonic potential can be scaled to any z_sz?jg
positive value. We vary the energy and fat the value 0.1 04 F |, oN=1024 21
to compare with previous studies of the FPU lattice. The & ——a N=2048

equations of motion are integrated using a fourth order sym- o>--—> N=4096

plectic integrator. The harmonic part of the Hamiltonian can 0.3
be put in the form ofN-independent normal modes via the z

canonical transformation =
0.2 i
N
Qi:jzl uijQj, j=1N, i)
0.1 _

with canonical variable®;. The columns of the matriy;;
are the orthonormal eigenvectors of the positive definite Her-
mitian eigenvalue problem for th@’s. The frequencies; of 0.0 3 3 s

"0 10 10
the normal mOdeQJ are time (in natural units)
[ 7]
;=28 5—— .
2N+2 =256, 512, 1024, 2048, and 4096. The error bars are the rms varia-
] . o tion over (typically) 10 independent trials, which are averaged to
The above transformation puts the Hamiltonidh into the  give final values.

3) FIG. 1. ng#/N vs time with E/N=0.1 and §y=N/16, for N

form
1 2 ranging fromN/64 to 5N/64 with randomly chosen phases,
H:z <_p_2+ ﬂQ2> for a fixed value ofE/N over a range oN, and plotng;/N
=\l2 ' 2 versus time. We compare the results to mechanical initial

P conditions in which energy is placed in a fixed number of
. P 0. modes wheredy=5 with the modes ranging frori/64 to
* (8N+8) %%, oo Gk DQQQAQ (N/64)+ 4. We have worked with other values &, finding
4) the same qualitative results.

In Fig. 1 we show the evolution afy;/N at fixed energy
where the coefficient§, as calculated ifil], are density E/N=0.1 for N ranging from 256 to 4096 foby
=N/16. The data are seen to lie essentially on a universal
evolution curve with the correspondence improving for large
values ofN (error bars, where shown, refer to the statistical
error computed over the different initial phases; otherwise
whereP represents the eight permutations of sigr, & and  errors are of the size of the symbpl3his result is verified
| and the functiorB(x) takes the value 1 if the argument is numerically for energy densities in the rangeEN [0.03,
zero,—1 if the argument ist 2(N+1), and zero otherwise. 0.8]. In Fig. 2 we show the evolution af./N for the initial

E/N=0.05 and for the same range Nf as in Fig. 1, but for

G(i,j,k,|)=; B(i+j+k+1), (5)

II. NUMERICAL CALCULATIONS

The main numerical tool we use is the calculation of the

effective number of moderg; containing the energy. We 0.3 L 2%
use the general formalism of our previous wgti?] that the @@ N=512
linear energie€;=1/2(P?+ »?Q?), i=1,... N, are calcu- SN0

lated as a function of time. The information entropy is given
by S=—3N .e/Ine, wheree;=E; /SN ,E; are the normal-
ized energies. We define the effective number of modes sharaék '
ing the energy byn.u(t)=expS[1-3]. We divideng; by N, 5
to get a fraction in the range from zero to one, which we plot
versus time for various values & and energy densities
E/N. We also average over 10—20 different realizations of %' |
the initial mode phases to minimize fluctuations. We take
care to distribute the phases of the modes in a random way
so that the quartic term ifl) does not make the total energy
very different from the linear energy. In this way one is 0.0 BE===="
always close to a set of slightly perturbed linear oscillators as
long as (BE/N)=<1.

For physical initial conditions we distribute the total en-  FIG. 2. n/N vs time with E/N=0.05 and §y=4 for N
ergy E uniformly among §y=N/16 low-frequency modes =256, 512, 1027, and 2048. Error bars as in Fig. 1.

10°

time (in natural units)
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0.8 the high-frequency modes, leading to equipartition. We as-
sume that the initial mode package containing the energy,
oy, is such thatéy=dk, where the size of the effective
packagesk determines the couplings to high frequency. Be-
cause, for early times, most of the energy is in the low-
frequency modes, it is convenient to classify the quartic mo-
nomial appearing in the sum o) depending on how many

of the four Q’'s in it belong to low-frequency modes. The
largest quartic terms at early times have the fQ(g of low-
frequency modes. These couplings produce deformations of
the linear actions of the low-frequency modes, creating sto-
chastic separatrices for those moded.1hit was shown that

the necessary energy to create separatrices in the low-
frequency modes has«1/N if energy is placed in a single
mode. If we place energy idy><N modes we expect sto-
chastic separatrices to be createdEd6y> 1/N, such thaE

N=2048

06

0.2

0.0 o ;
10" 10° 10° is independent oN. However, this occurs at low energy for
time (in natural units) SyI/N small.
FIG. 3. g /N vS time forN= 2048 andE/N=0.03, 0.05, 0.1, Because of the nonlinear couplings among the low-
0.2 04 and 0.8, frequency modes, the frequency of these modes is corrected

by a beat that we approximate in the following way. We
substitute  canonical action angle variableQ;

8y=>5 and centered aroung= (N/64)+ 2. We see that there _ @] _ ; :
. - . . ; . = ilwi)cosi@) and P;=(2wilj)sin(¢) into the
is an initial transient with the evolution of./N versus time, Hamiltonian(4), to obtain

different for eachN value, but coalescing later in the evolu-
tion at longer times and higher valuesmf/N. If we intro- B
duce a factor of/N to normalize the time scal@ot shown, H= E wi'i""(M
we then find that the evolution curves coalesce at early times '

but then diverge. These results are qualitatively consistent

with the numerical study ifi2] (Fig. 5), which indicated an X > G(i,j k) Vool angijkl), (6)
extra volume filling factor, proportional ta/N, when the Lk

energy was placed primarily in a single low-frequency mode,, here angikl ) =cosh)cos@)cosh)cos). The fre-

typically y=3. Inzthis_ case the primary drivin_g frequency is quency of mode is the derivative of the Hamiltonian respect
a beatQgx yE/N, with y=3, such that the time for trans- I, which evaluates to

fering energy is much longer than in the present situation.

This allows the filling of the low frequency modes by suc- B
cessive excitationgsee Ref.[1]) to manifest itself in the Qi=wi+(m
additional VN dependence. In Fig. 3 we plot.4/N as a
function of the logarithm of time, for a range BfN values o B
again with physical initial conditions(note that nes/N X,Em G(i,j. k1) Vool T angijkD/T. - (7)
asymptotically converges to a value which is smaller than 1, h

due to fluctuations as computed in Ri]). The evolutionis  \we further assume that there is a rapid spreading over low-
a monotonically increasing function with an initial transient frequency modes, as observed numericlly such that we

and later an apprOXimately linear increase on the |Ogarithmi%re Considering the sum to run over sodle modeS, to be
time scale. The linear part shifts to the left by somewhat lesgetermined. After using the selection rf, the number of

than a decade with every doubling of the energy densityierms in the above sum is then of the order 8£)2. We also
which |nd|c§tes a power I.aw increase of the time scale withssume every quartic term in this sum is typically of the
(N/E)* having an approximate exponemt=3. To be more  same size, i.e., with equal energies for all low-frequency
quantitative we will normalize the time by a function of modes, w;l;=E/sk. Since these terms come with random
N/E, as in[2] (Fig. 9, to determine if all values dfl/E can  phases, according to standard Gaussian statistics we take the
be fitted on a universal curve, after estimating the value of sym to be proportional to the square root of the number of

analytically. terms. With these assumptions, and setting- »; so that
(1;/1;)*? cancels(7) becomes
IIl. SCALING ESTIMATE AND NUMERICAL BE
COMPARISON 0~ + o ®)

In the following we present an approximate theory of
Hamiltonian diffusion to explain, qualitatively, the power- with the sk~ in the energy per mode canceling thk ef-
law behavior at low-energy densities. We start by assumindective couplings. In(8) and below we seN+1=N (large
that there is an effective number of low-frequency modles N) except where it appears in the selection rule. Fi@n
that are responsible for stochastically transferring energy ta;=mi/N, for low-frequency modes, and taking the beat
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frequency()g, betweernw; and a neighboring mode, to be of up toi= éh for which
the order of the nonlinear frequency shift, we obtain, for any

i (with i<N), h,=N-é8h/2, /=séh.
i BE Thus we have a decreasing number of couplings with in-
QB”W N (9)  creasingi, with the average number of couplings per low-

frequency modesh/4 which scales withBE as in(13). Sub-
stituting this result, together witfiL3), into (10), then for a
single low-frequency modé we obtain an estimate for its
averaged energy decay

The change in the linear enerd=%(P?+ w?Q?) of a
driving low-frequency mode, can be calculated by taking
the derivative of(6) with respect to the angle;

d& _ [ 2B &__ Z—B)wi'g—EEiEh(t), (14)
dt N+1) " dt N 2
where from(3) w;=wi/N.
X > G(i,j,h1h2) Voo onionl il sine, Since sk low-frequency modes, assumed to have energy,
phinz couple tosh high-frequency modes witlhk= sh, the cross
Xangdj,h1h2). (10) couplings imply each high-frequency mode is coupled on

average tosk/4 low-frequency modes. There are phases in
As in our previous worK1] the notationhl andh2 explic-  the low-frequency mode beat oscillations and in the high-
itly indicates that the energy transfer occurs only betweerirequency difference oscillations that can affect the Arnold
low-frequency beat oscillation and high-frequency mode dif-diffusion. This has only been studied for exponentially slow
ference oscillations through the Arnold diffusion mechanismdiffusion [12]. The effect of these phases when more than
In the above equation, the summation is over indicdsl,  one driving term exists, for the case of strong Arnold diffu-
andh2 for a giveni. The only terms to transfer energy to sion, gz=<Jdw;,, has not been studied. For lack of evidence
high frequency modes are the ones whgre, since then we will use the simplest assumption that the effect from each
the product of the two low-frequency angles does not have dbw-frequency mode is independent. Setting=BE/N (i
fast phase associated with it. Additionally, the selection rule= 6h/2= BE/ ) as an average value {ti4), and dividing by

requires thatG(i,j,h1,h2) will be zero unless E;, we obtain, an average, for each mode in the package,
2i+h1+h2=2N+2, (11 dE; E\2
?'=—E(%> En(t)dt, (15)
for which G= — 1. Expanding the dispersial) at high fre- i
quency and usingl1), with the assumption for scaling purposes that the number of
Swn=(m2i12N?)(h1—h2). (12) couplings is fixed. Integratingl5) in time, with E;(t) vary-

ing from E/ 8k att=0 to the equipartition valu&/N at the

In order for the low-frequency beat oscillations to transferfinal time T we get
energy by Arnold diffusion to the high-frequency beats we

e (.= i ity i N\ [B\[BE\2(T
requireQlg= Swy. From(9) and(12) the inequality gives inl —| =2 2= f E,(t")dt (16)
Sk N 0 '
T ﬁE> w
NN = anz (M1 02) e Equation(15) only holds, initially, sinceE decreases in time
as the diffusion proceeds. However, the changk ia slow
which reduces to compared to the initial build up of the energy in the high
frequency modes. Furthermore, we expect that as the energy
Sh=(h1—h2), .= ZBE_ (13) in the high-frequency modes increases, other pathways be-

come available for the energy distribution among the modes,
] ) . to further justify holding the number of couplings constant in
To determine the number of terms in the sunti) we note e integration. The final step in the approximation is to es-
that for everyi we can takeh2 arbitrarily from the high-  timate the value ofngh(t’)dt’ att=T, a time of “near
frequency package ash modes and theil is calculated  oqyjinartition.” The quantitg,(t) appears in an integral, so
from (11) with the restriction, from(13) that h1-h2 ¢ its exact form is not required. For a diffusive process, in

=2pE/m. Writing (1) in the form which the amplitudes of the modes increase with, we
i=N+1-h2—//2, / integer, might expect the mode energies to increase linearly wyith
. t
such that fori =1, we have ~_
En(D)=5(E/N),

h2: N— 1, /: 2
such that the time dependence does not deperd diis is
h,=N-2, /=4 found to be approximately true, numerically, over most of
the evolution to near equipartition. Other forms of the time
dependence dE, can also be taken with only small numeri-
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FIG. 4. ng/N vs t(BE/N)®. FIG. 5. t(ne/N=0.4) vsE/N compared to proportionalityvs

(E/N)? of dashed line.
cal differences. Evaluating the integral with the assumption

. . . The numerical results also clarify a result from a previous
of linear time dependence &, (t) we obtain fy P

paper[2] in which a N*? scaling was numerically found,
which would not allow a finite-time thermodynamic limit.

. (17)  The resolution of the seeming contradiction is that there is an
initial transient which can extend over much of the time to
equipartition if N is not very large and the initial energy is
placed in the first few mode&ot proportional toN). The

2

o
= BEINY® '”( 2BEIN

We note that the logarithmic factor varies slowly. The nu-
merical coefficient is only a rough estimate. Equatidd) existence of a thermodynamic limit also agrees Viigh in

exhibits a basic scaling of=(N/E)3. The scaling can be which the ener :
. . LoD . gy was also placed in a mode padketN.
checked numerically, by rescaling the time in Fig. 3. This ISThe power ofN/E, in that study, numerically fit better to

don? n '.:'g' A; ;or five \I/_alues% QE/N’ _g|vag 3re\a/1\70nal1ble a=1. The use of a different equipartition parameter, less
con !rmat|o_n oft € rescaiing o time thH\l{ )”. We also sensitive thamg/N, could have led to uncertainty im, but
confirm this scaling by plotting the time to reach«/N 4 issue has not been resolved

=0.4 against/N, for all of the data, comparing the resultto /4 emphasize that the theory we have developed to ex-
the inverse cubic sc_alin@jott_ed ling, i_n Fig. 5. We can also plain the scaling, does not predict the shapagft) which
compare the ma_gmtude_ atin (1.7) with th_e humerics. Ex- depends on complicated dynamical processes. Furthermore,
tiapolatmg the_linear(with Io_g time) portion of the E/N Nert is related to the evolution of the energy in the individual
_Fo'llofug’e m_dFlg. 3 e /N=1 we obtaln,_appro;]qmat(laly,_ modes in a very complicated way. These dynamics lie be-
~— 10 Considering our many approximations, this value ISy 5 simple mode-averaged theory. We also emphasize
remarkably close to the value Gf=3X10" obtained from  hat the theory depends on having nonexponentially slow
(7). stochastic diffusion to high-frequency modes, being driven
by local mode-mixing stochasticity among low-frequency
IV. CONCLUSIONS AND DISCUSSION moded1]. For the approximations to be valid we require that

- . . . T> 7 where 7 is the time scale for the assumed stochastic
We have indicated, numerically, and justified, theoreti- . — . .
y J process. Sincer~Qg'~(N%BE)?, the approximations

cally, that the FPU3 model has an appropriate thermody- roce

namic limit. Provided there is sufficient energy in a group ofhold if BE/N<L1.
low-frequency modes that stochastic diffusion to high-

energy modes occurs on a nhonexponentially slow time scale

[1], then the dominant time scale to equipartition is a power We want to acknowledge the support from Fapesp, Brazil
law (N/E)“. The value ofa= 3, estimated from a theoretical (J.DeL), NSF Physics division(A.J.L.), and INFN, Italy
scaling argument, was found to fit well to the numerical data(S.R).
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